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INTRODUCTION

Recent proposals for orbiting space systems have stimulated research
in the design, analysis and control of large space structures. Such
structures are envisioned to be very large (one review paper [1] speculates
about "a structure nearly the size of Manhattan Island'") and are often in
the form of lattice structures. A lattice structure is a network of
slender elements which are connected by joints. This paper is concerned
with the analysis of the dynamics and, in particular, the wave-like
motion of lattice structures.

It is convenient to use matrix methods to analyze the dynamics of
lattice structures. In particular, the dynamics of a lattice member may
be described by a transfer matrix relationship, and the dynamics of a
joint in a lattice structure may be described by a joint coupling matrix
relationship. 1In order to study wave propagation in lattice structures,
it is convenient to introduce wave-mode coordinates and scattering matrices.
Wave-mode coordinates are obtained through the process of diagonalizing
or uncoupling the transfer matrix relationship. When the transformation
used to uncouple the transfer matrix is applied to the joint coupling
matrix relationship, the scattering matrix is obtained.

In this paper, the derivations leading to wave-mode coordinates and
scattering matrices in lattice structures are reviewed. In addition,
simple one~dimensional examples are given to illustrate how wave-mode

coordinates and scattering matrices may be used to describe dynamics and

wave propagation in large space lattice structures.
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ANALYSIS

State Vectors and Transfer Matrices

In the matrix formulation of the dynamics of lattice structures, the
state or configuration of the lattice is determined by state vectors
which exist at each point in the lattice. The state vector at a particular
point is a column matrix whose components may be displacements, rotations,
internal forces and internal moments. The actual components contained
in a state vector at a particular point depend on the model used to
describe the latt ' ce at that point.

If the members of a lattice structure are slender, they may be modeled
as one-dimensional continua. The components of the state vectors (and
the state vectors themselves) of a one-dimensional continuous member are
functions of time and one local spatial coordinate, say, x which extends

along the length of the member. At a particular location x = x the

1,

Fourier transform of the state vector of a one-dimensional member is given

by [2]

é(xl,w) = j. _g_(xl,t)e-imt dt (1)

where E(Xl,t) is the state vector at x = Xys g(xl,w) is the Fourier trans-

form of the state vector at x = x t is time, w is radian frequency, and

1’

i = v-1 . The state vector E(xl,t) is given in terms of the transformed

state vector Eﬁxl,w) by the inverse Fourier transform relationship [2]

o0 .
z(x),t) = 711? [m Z(x e du (2)
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Throughout this paper, an overbar will signify a Fourier transform, and
an underbar will signify a vector or a matrix.
The Fourier transforms of the state vectors at two locations x = Xy

and x = X, of a one-dimensional lattice member can be related by a transfer

matrix according to

2(x,,w) = T(x, = % ,w)z(x,,w) (3)

where l(x2 - xl,w) is the n x n transfer matrix (here n is the (even)

number of components of the transformed state vectors Eﬁxz,w) and é(xl,w)),
which is a function of the separation (x2 - xl) and the frequency w. The
transfer matrix is derived from the equations of motion and the constitutive
equations of the member. Transfer matrices for several specific types of

lattice members are given in [3].

Wave-Mode Coordinates and Propagation Constants

The transfer matrix T in eqn. (3) generally contains nonzero elements
off its main diagonal, and ;herefore the scalar equations relating the
components of Eﬁxz,w) and éﬁxl,w) are coupled. In order to study wave
propagation in lattice structures, it is convenient to cast the transfer
matrix relationship given by eqn. (3) into a different form. In particular,
it is desirable to diagonalize the transfer matrix, and thus produce an
uncoupled set of scalar equations. This diagonalization may be accomplished
by the following procedure.

First, the eigenvectors of T are found, and the n x n wave-mode matrix
Y(.) is assembled. The columns of Y(w) are the eigenvectors of the

transfer matrix T. Next, a new vector ﬁ(x,w) is defined by the equation

X
A 2,
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+ wix,w) =Y "(w) z(x,w) (4) "
The vector i(x,w) will be discussed and interpreted shortly. From eqn. (&) :‘:

it follows that .;

P
z(x,w) = Y(ww(x,w) (5) o

L Note that the existence of _Y__l(w) in eqn. (4) depends on the linear -
independence of the eigenvectors of T [4]. Substitution of eqn. (5) into

eqn. (3) gives ;'.'..-

o

N

o

b ) ] -
Y(@)E(xy,w) = I(x, = x )Y (WH(x,0) (6) -

Premultiplication of both sides of eqn. (6) by X_l(w) gives :;::
=
- - e
W(xy,w) = W(Ww(x,,w) (7 "
L where
-1 .
Ww) =Y (uu)I(x2 - xl.w)_\_(w) (8)

The n x n matrix W(w) is called the wave-mode propagation matrix. Assuming -

that the eigenvectors of T are linearly independent (and that, therefore, ':::

l-l(w) exists), the matrix W(w) is a diagonal matrix of the form {4] A
B
el

;'.i.

b
-6 - _:
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vhere the Ki (i = 1,2, ..., n) are the n eigenvalues of T. For uniform
lattice members, which are considered exclusively in this paper, the
transfer matrix T is cross-symmetric, and therefore the eigenvalues

of T occur in pairs (Kj, l/Kj)’ j=1,2, ..., n/2 [5].

The vector ﬁ(x, w) given by eqn. (4) is called the wave-node vector,
and the components of Q(x, w) are called wave-mode coordinates. The
wave-mode coordinates are given in terms of the physical components of
the state vector by eqn. (4), and the physical components of the state
vector are given in terms of the wave-mode coordinates by eqn. (5). 1In
general, each wave-mode coordinate will be a combination of all the
components of the state vector. The wave-mode matrix Y(w), which gives
the transformation between ghe wave-mode vector and the state vector,
is similar in some respects to the modal matrix used in the analysis
of multiple degree of freedom vibratory systems.

Because the matrix W(w) in eqn. (7) is diagonal, the wave-mode
coordinates are uncoupled from each other as they propagate from x = X
to x = x2 along the lattice member. The components of i(x, w) are
called wave-mode coordinates because they represent, for manv lattice

Eqn. (9) can be written in the form

member models, propagating waves.
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Y, (x,-x,) 7
# e 172 0 . . 0
o Y?_(xz—xl)
e .
Ww) = (10)
L 0
Y_(x,-x.)
n 271
0 . . . 0 e ]
L where the quantities Yi (i =1,2, ..., n) satisfy the equations
Y. (x,-x,)
2
L K, =e * 1 (11)
i
or -
?‘h
b
1 )
Y — 1n(K,) (12)
i (x2 xl) i :,j
o
The quantities Y; are called "propagation constants", and are in general o
s
complex. Since the eigenvalues Ki occur in pairs (Kj, 1/Kj), the propa- ij
S
L
gation constants occur in pairs (Yj, —Yj), j=1,2, ..., n/2. The ;
e
general form of the propagation constant pair (Yj, -Yj) is [6] :j
{i
e
0-‘,
Y. = a(w) + ik(w) (13)
J " L]
'_'\
Oy
Yy = —o(w) - ik(w) (14) 4
where a(w) is called the attenuation and k(w) is called the wave number. f}

Propagating waves represented by wave-mode coordinates may be
classified according to the nature of their corresponding propagation

constants. If a propagation constant is purely imaginary, the wave

represented by the corresponding wave-mode coordinate is not attenuated




2
as it propagates. If a propagation constant has a nonzero real part and ;%
a nonzero imaginary part, the wave represented bv the corresponding wave- -

=
mode coordinate is attenuated as it propagates. A propagation constant ﬁﬁ
which is purely real corresponds to a wave-mods coordinate which does not E:
represent a wave at all, but rather represents a nonpropagating spatially f::
attenuated vibration. 1If the imaginary part of a propagation constant Eié

o~
is linearly proportional to frequency w, the wave represented by the ;;(
corresponding wave-mode coordinate is nondispersive, and the phase i;

AN
velocity of the wave is given by the inverse of the constant of pro~ ;;:
portionality. If the imaginary part of a propagation constant is not ;‘
linearly proportional to frequency, the wave represented by the corre- -
sponding wave-mode coordinate is dispersive. é;

The physical interpretation of the fact that propagation constants ;5
for uniform members occur in pairs (Yj, -Yj) is that for uniform members Y
identical waves may propagate in either the direction of increasing x ,i:
or the direction of decreasing x. Propagation constants with a nonpositive &?
real part and a negative imaginary part correspond to wave-mode coordi- :;'

o
nates which represent waves which propagate in the direction of increasing if
X, and propagation constants with a nonnegative real part and a positive E:T
imaginary part correspond to wave-mode coordinates which represent waves 71‘
which propagate in the direction of decreasing x. For passive lattice 25
members (that is, for lattice members with no external energy inputs), ;E;
propagation constants with a positive imaginary part must also have a :i

.-,&
nonnegative real part, and propagation constants with a negative :?

N
imaginary part must also have a nonpositive real part [6]. :‘f

2

2

~9- 4y

Y

- N
G G S s G L R L A LS S L R A A Nt




Joint Coupling Matrices and Scattering Matrices

The dynamics of a joint in a lattice structure may be described

by a joint coupling relationship of the form [7)

r 211
E2

where the éi (i =1,2, ..., m) are the state vectors of the m members
which are connected to the joint at the respective points of contact
between the members and the joint, iext is a vector containing the
Fourier transforms of the external forces and moments which are applied
to the joint, and B is a matrix called the joint coupling matrix. The
joint coupling matrix is derived from the equations of motion of the
joint, the constitutive equétions of the joint, and the geometric com-
patibility requirements at the joint. The explicit form of the joint
coupling matrix for arbitrary two and three-dimensional rigid joints
with mass is given in [7].

Eqn. (15) is written in terms of the state vectors éi (i =1,2,

(15)

., ).

In order to describe the dynamics of a joint in terms of wave-mode coordi-

nates, the following transformations are introduced:

—1

z,. =Y (Ww,, i =1,2, ..., m (16)
—1 —1
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. . t . .
where Xi(w) is the wave-mode matrix of the i h member which is attached
. s - . .th
*’ to the joint, and w, is the wave-mode vector of the i~ member at the
. .th .. . .
point of contact between the 1 member and the joint. Substitution

of eqn. (16) into eqn. (15) gives

(¥ @y T

_¥.2 (L")_“_’Z

P ¢ . = f (17)

—ext

{Lez]

| Y, (0%

which can be written in the form

\
fy_l
¥
9 -
C 4 = f (18)
- —ext
W
L—ﬂu
where
Y, W 0 0
c-B 0 ¥, (W) . (19)
0
L_ 0 . . . 0 Y (w)
m
- 11 -
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Eqn. (18) describes the dynamics of a joint in terms of wave-mode vectors g
w
w.. As discussed above, the wave-mode vectors contain wave-mode coordi- -
nates which represent waves travelling along the members. 1In describing :
- the dynamics of 4 joint in terms of wave-mode coordinates, it is con- :‘
w -~
venient to group the wave-mode coordinates into two groups: wave-mode v
cvordinate which represent waves "entering" the joint, and wave-mode <

coordinates which represent waves '"leaving' the joint. A wave-mode
; . .th . .
coordinate in the 1 member attached to the joint represents a wave

entering the joint if

u .
- g
sgn }Im(,) c(n, s e N =1 (20) *]
L i —xi >
wiivre 3y is the propagation constant corresponding teo the particular -
wave-mode coordinate, e i is a unit vector pointing in the direction of A
A .
) , . ) th 2
increasing x,, where x, is the (local) x-axis of the i member attached :
5
»
"
to the joint, and n, is the cutward unit normal to the joint at the point .
.th . . . .
where the i member is attached to the joint. Eqn. (20) will be i
|
satisfied if the xi-axis points "inte' the joint and the wave-mode S
coordinate propagates in the direction of increasing X s OF if the ;}
xi—axis points "awav from'" the joint and the wave-mode cosordinate propa- i
pates in the direction of decreasing X A wave-mode coordinate in the -
.th . . o . -
i member attached to the joint represents a wave leaving the joint if 5
— = .
sgn o Im(.) ¢ (n, * e )y = -1 (215 &
o —1 —X1 J

R
(]

.
»
.
L
.

. - - . Te . ._J- ..' ..-... .
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b Eqn. (21) will be satisfied if the xi—axis points "into" the joint

and the wave-mode coordinate propagates in the direction of decreasing
X, OT if the xi—axis points "away from'" the joint and the wave-mode
coordinate propagates in the direction of increasing X5 Fig. 1
illustrates schematically wave-mode coordinates entering and leaving

a generic joint.

b The scalar equations in eqn. (18) may now be rearranged to give
w
—out -
o )= I, 22)
w o
— in

where -V}-out is a vector containing all the wave-mode coordinates leaving
the joint, -‘}-in is a vector containing all the wave-mode coordinates
entering the joint, and D is the matrix obtained by rearranging the
scalar equations of eqn. (18) into the form of eqn. (22). (The matrix

manipulations leading to eqn. (22), and all the other matrix manipu-

lations described in this section, will become clearer in the examples

XA

s b N

given below.) Eqn. (22) can be written as

'l.l'l-
P

W + w, = 23
P—out Eout P—in y—in £ext (23)

where D is the submatrix of D which multiplies w , and D, 1is the
—out - —out —1in
submatrix of D which multiplies Ein' Premultiplication of both sides

-1 . .
(assuming that _QO exists) gives

-1
of eqn. (23) by -I-)-ou ut

t

w +ptp. w =Dt f (24)
—out ~out—inm—in —out —ext

- 13 -




. T e WFW

-~
l.‘
RN
+' or -
W S(Ww, + G(w)¥f R
= w ¢ ‘ay
—out —-h)~in —<w)—ext (25) :‘
o,
' where DA
S(w) = -D - D, (26) o
- —out —in .
-
b and
jos
-1 n
G(w) = -
GG = Doy @
~
)
e
The matrix §(m) is called the scattering matrix of the joint, and the
matrix G(w) is called the wave-mode generation matrix of the joint. t
-
: . N
Eqn. (25), which is merely a manipulated form of eqn. (17), is the RN,
NY
final form of the description of the dynamics of a joint in terms of e
wave-mode coordinates. Eqn. (25) may be considered as an input-output :f
relationship for the joint, and states that outgoing waves may be -
generated by incoming waves via the scattering matrix S(w), or may be
generated by external forces (or moments) via the wave-mode generation ;f
matrix G(w). The scattering matrix S(w) contains the transmission and :;
reflection coefficients which the wave-mode coordinates encounter as ;
they enter the joint. If the transmission and reflection coefficients %:
in S(w) depend on the frequency w, the scattering at the joint is called {:
dispersive. If the transmission and reflection coefficients in S(w)
G
>
are independent of frequency, the scattering is called nondispersive. \$
b
With a scattering matrix and a wave-mode generation matrix for
SH)
each joint in a lattice, and a wave-mode matrix and a wave-mode propagation :
- 14 - o
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matrix for each member in a lattice, it is possible in principle to
analyze wave propagation in lattice structures of arbitrary complexity.
Following several intermediate examples, a complete simple example of

such an analysis is given in the next section.
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In this section, some simple one-dimensional examples are given to B&
ik
»
A"

illustrate the concepts discussed above. Emphasis is placed on inter-
pretation of the results, which in these simple examples can be checked

by intuition and by elementary methods.

Example 1: Wave-Mode Coordinates for an Elastic Longitudinal Rod

In this example, wave-mode coordinates and propagation constants
are derived for an elastic longitudinal rod. A section of an elastic
longitudinal rod is shown in Fig. 2, which also shows the local coordi-

nate x and the sign convention adopted for the displacements uy and
u, and the forces F1 and F2. The rod is assumed to be uniform, with

mass density p, cross-sectional area A, and elastic modulus E. The

Fourier transform of the state vector at x = Xy is

z, = (28)

z, = (29)

The vectors E_ and é_ are related by the transfer matrix relationship

1 2

- 16 -
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where the transfer matrix T is

-
cosb
I =
.
.:UQMZ 51gu
where
L = Xy = X
H = pA
= e
6 Lw i

The eigenvalues of the matrix

cosf - isinb

~
]

cosf® + isinB

=~
[}

Therefore, the propagation constants given by eqn. (12) are

given by [3]

cosB

T in eqn. (31) are [8]

~-i@

i6

- 17 -

(30)

(32)

(33)

(34)

(35)

(36)

(37)
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L Y, =7 (10) = 1w [2 (38)

The eigenvectors of the matrix T in eqn. (31) are [8]

1
v, = (39
-iRw
1
v, = (40)
iRw

# where

R = AfE (41)

Note that the quantity R is the mechanical impedance of the rod [9].

Since the eigenvectors of the transfer matrix T are given by

r eqns. (39) and (40), the wave~mode matrix for the longitudinal rod is
11
Y(w) = (42)
+ -iRw iRw

The inverse of the wave-mode matrix is

1
1 -~ ——
* iRw
-1 1
(w) = 5 (43) R
1 :.:
1 iRw ::-‘
w2
) -
The wave-mode propagation matrix W(w) given by eqn. (9) is
- 18 -
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W) =¥ IY = (44)

’
? where ‘\

(45)

<
I
e
£

o

The wave-mode vector g at x = x, and the wave-mode vector gl at -

2 2

x = x, are related according to eqn. (8) by g
Gy = H@E, (46) 2
Writing out eqn. (46) gives »
L0 -
o + € e + t.-
o
‘ - ' (47
W v, B
2 o ! :-;-
i~
Eqn. (47) is the diagonalized form of the transfer matrix relationship .
given by eqn. (30). The components Géf and ;;- of the wave-mode vectors ;ﬂ
EZ and gl in eqn. (47) are written with a plus (+) superscript since the oy

. . -+ -+ .
propagation constant -y which corresponds to v, and vy has a negative

. . g . -+ =+
imaginary part, indicating that w and Wy represent waves which

2 "
travel in the direction of increasing x. Similarly, the components -f;
) -- - .
v, and wl are written with a minus (-) superscript since the propa-
<
- - L9
gation constant y which corresponds to w, and wl has a positive o
- 19 - o
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imaginary part, indicating that ;2 and Gi- represent waves which
travel in the direction of decreasing x.

From eqns. (4) and (43), the wave-mode coordinates for the longi-
tudinal rod are given in terms of the physical components of the state

vector by

1
-t 1 " iRw _
wo (x,w) 1 u(x,w)
o > ) (48)
wo(x,w) 1 F(x,w)
1 -
| 1Rw_

which when written out gives the scalar equations

G-+(x,w) = %(G(x,w) - }%a ?(x,w)) (49)
W (x,w) %(Mx,w) + I%E ?(X.w)) (50)

Note that each wave-mode coordinate contains information about both the
displacement u and the force F. From eqns. (5) and (40), the physical
components of the state vector are given in terms of the wave-mode

coordinates by

G(x,w) - ;4-(x,w) (51)
F(x,w) W (X,w)

-iRw 1Rw

which when written out gives the scalar equations

- 20 ~
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ulx,w) = G-+(x,w) +w (x,w) (52)
F(x,w) = -iRe w1 (x,0) + iRw v (x,0) (53)

Eqn. (52) expresses the familiar fact that the displacement in an
elastic longitudinal rod may be written as the sum of a wave travelling
in the direction of increasing x and a wave travelling in the direction
of decreasing x. Eqn. (53) states that the force (or stress) in the rod
can also be written as the sum of the same two waves, scaled (in the
frequency domain) by the appropriate factors.

The eigenvectors given by eqns. (39) and (40) remain eigenvectors
when multiplied by any constant. By choosing the first components of
the eigenvectors to be unity, the wave-mode coordinates in eqn. (48)
are given the dimensions of displacement. If the second components
of the eigenvectors are chosen to be unity, the resulting wave-mode
coordinates will have the dimensions of force. Both sets of wave-mode
coordinates will satisfy eqn. (47).

The propagation constants given by eqns. (37) and (38) are purely
imaginary. Thus, waves on an elastic longitudinal rod are not
attenuated as they propagate. Further, the imaginary parts of the
propagation constants given by eqns. (37) and (38) are linearly pro-
portional to frequency, and thus waves in an elastic rod are nondis-
persive. The phase velocity of the waves, which as stated above is

equal to the inverse of the constant of proportionality, is, as is

well known, vE/p .
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+. L.ample 2: Joint Coupling Matrix for a Rigid One-Dimensional

Joint with Mass

In this example, the joint coupling matrix for a one-dimensional
*} rigid joint is derived. A rigid one-dimensional joint with mass m is
shown in Fig. 3a  Two members, denoted by 1 and 2, are attached to
the joint. The joint is called one-dimensional because all members
Pi attached to the joint lie along a line, and the joint is constrained
to move only along that line. The joint is subjected to an external

force FJ. Fig. 3a also shows local coordinate axes Xy and X,y for

members 1 and 2, respectively, and a joint coordinate axis x Fig. 3b

3
shows the components u, and Fi (i = 2,3) of the state vectors of the two

members at their respective points of contact with the joint, and the

components u, and FJ of the state vector of the joint.

Since the joint is rigid, the geometric compatibility requirement

at the joint is
u, =u, = u (54)
Therefore,

5, =0, =0 (55)

-u. +u. =0 (56)

Applying Newton's Second Law to the joint gives, in terms of the

P Fourier transforms of the displacements and forces,

F. 4+ F. +F. = -m’g (57)
T - 22 -
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Substitution of eqn. (54) into eqn. (57) gives

- - - 2~
P 3 3 W, (58)

i
el
+
o]
+
E)

1}

or
2. - - _
-miu, + F, - F_. =F (59)

Eqns. (56) and (59) can be written as

(_ 3
Y2
[—1 o 1 o7 |2 0
2 _l - 2= {_ (60)
mw 1 0 1 ug FJ
F3
L
Eqn. (60) is in the form of the general joint coupling relationship
given by eqn. (15), with
-1 0 1 0
B = (61)
2
-~ 1 0 -1

Eqn. (61) gives the joint coupling matrix for the one-dimensional
joint of Fig. 3.

This simple example illustrates the general procedure for deriving
a2 joint coupling matrix. The joint coupling relationship for rigid
joints consists essentially of geometric compatibility requirements
and dynamic requirements, written in terms of Fourier transforms and
in matrix form. 1In [7], the procedure used to derive the joint coupling

matrix of eqn. (61) is applied to more complex two and three-dimensional
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rigid joints.

Example 3: Scattering Matrix for the Junction of Two Elastic

P N e P T L T U
b WA PN s PN S N, WO A AR Y% R Y .
.d;!;fli..t.xl{:&'ﬁc.b(&fh*&.’“\ L e

Longitudinal Rods

Two elastic longitudinal rods connected by a rigid one-dimensional
joint with mass m are shown in Fig. 4a. Rod 1 has mass density K

Rod 2 has mass density

cross-sectional area Al’ and elastic modulus El'

02, cross-sectional area A2, and elastic modulus E2'
As discussed in the previous example, the dynamics of the joint in

Fig. 4a are described by the joint coupling relationship given by

eqn. (60). In this example, the process of transforming eqn. (60) into

a scattering relationship of the form of eqn. (25) is illustrated.

From eqn. (51), the state vectors at points 2 and 3 in Fig. 4

are related to the wave-mode coordinates at points 2 and 3 by

5, 1 1 G;
_ = o (62)
F2 —1le ‘ 1R1w w2

and
- -+
u3 1 1 w3
_ = _ (63)
F3 —1R2u 1R2w w3

where
Ry = A J/rE) (64)
R, = A2 02E2 (65)

- 24 -
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3

-4 -
The waves represented by Wy s Wy s Wa o and w

3 are shown schematicallv

by arrows in Fig. 4b. Substitution of egns. (62) and (63) into eqn.

(60) gives
_ — 10
r 1 1 WZ‘H
(--1 0 1 0 J hlelu 1le W, 0
= (66)
|2 _ - N .
L -mu 1 0 1 1 1 w3 FJ
¢ __
_leZu 1R2u Lw3 J
.
which can written as
M1 10 0o 7] N
2
r_ - s A : - -
-1 0 1 OI lle 1Rlu 0 0 v, » 0
< =
7-m2 10 —1# 0 0o 1 1 vt F 7
B i 3 J
i 0 0 —sz 1R2u-J \w34

Egn. (67) is in the form of egqn. (18). Multiplying out egn. (67) gives

= (68)

2 2 -+ -
(-m."-iR_ ) (-mu "+iR, L) iRt ~-iR. W w F

- -+ . .
and w represent waves leaving the joint,

Note from Fig. 4b that 52 3

-+ - .
and w, and w3 represent waves entering the joint. Rearranging the
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order of the scalar equations contained in eqn. (68) gives

(wz 1
L 1 1 -1 1 7 G; 0
“ - (69)
(- iR )  iR,x  (-m iR y ik (et F
muw 1+ 9% i lu b QJ—I! \~2 7
.
Egn. (69) is in the form of eqn. (22) with
VoS (70)
—ou it
¥3
L and
o+
_ 2
w, = (71)
—in _
r i
Eqn. (69) is egivalent to
r -1 1 v,
-+
(—mw2+1’le) isz ¥q
hY
- -+
+ = _ (72)
F
VA . - - J
(~mu —1Rl¢) —1R2u— \w3
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r (—mw2 + ile)

and

]

(-mw2 - ile)

The inverse of the matrix D
out

r —isz

? Eqn. (72) is in the form of eqn. (23), with

~iR, W

given by eqn. (73) is

"yt

»u_»_»
P A
ARNRERERRD.

SN

v
[
)

(73)

l'l
P l‘
L)

r

iR W |

Sl
e

“a
-
1

Y
RAOXA

p ',

(74)

I T
Pt AL
ARSI AY

«

vao
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. {"_. "n{-

< s -
Cal )

AR AR]
»

1 ]

2 . .
—-mw +1R1w+1R2w

2,
-mw +1R1w

2, . . ~E
~mw + 1R1w+1R2w g

(75)

1

2 . .
—-mw +1le+1R2w

L

some manipulation,

DR R v N -’ .,

S e
MERORCAC N \iﬁiﬁi&ﬂhﬁ&!k. .>;s:s

Premultiplication of both sides of eqn. (72) by Bgit

—mw2+iR w+iR, w o~
1 2 0
e

gives, after

'.( W;-;c ~ _\{\ )
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-
.
-
.
-
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Eqn. (76)

given by

— 2, . , —
mw +1le 1R2w 21R2m
2. . . 2. ,
- +1R1w+1R2w ~m +1le+1R2w
2iR mwz-iR WHiR, W
! 1Y
2. . 2., ,

—-mw +1le+1R2w -mw +1R1w+1R2w ~
— —1R2w 1 —1
2 . 2 . .

-mw +1R1w+1R2w -mw +1le+1R2w

2 .
-mw +1le 1

2
1 2

L-—mw +iR wt+iR W

is in the form of eqn.

mu2+iR w=-1iR,w

1 2
- ‘2+iR w+iR
m. 1 2w
Zile

—mw2+ile+iR2u

—

1

—mw2+iR w+iR(nJ
2

21R2w

—mm2+iR1w+iR2w

2
me —iR, ur+i
1R1u 1R2w

-mm2+ile+iR2w

and the wave-mode generation matrix G(w) given by

G(w)

-isz
~mo HiR IR
mw l“L zw

4R w
m. l(.u

2
—-mw i iR
o +1R1u 1R2w

A

1

5
-m. “+iR,uw+iR W
- 1 2

1

e
~m +iR,w+HiR L u
1 2!

(76)

(25), with the scattering matrix S(w)

(77)

(78)

oY '; O

ER

S

R

LY .-l"f":'..-". -

IR Y

i SIS BN )
AR AR

-':’r':": ‘ ‘,)

-
LR,
K

»
~




| Eqn. (76) is the description of the dynamics of the joint of

Fig. 4 in terms of wave-mode coordinates. Note that the description of
the joint dynamics in terms of the physical components of the state

L vectors (eqn. (60)) contains only information about the dynamics of the
joint. On the other hand, the description of the joint dynamics in

terms of wave coordinates given by eqn. (76), which implicitly contains

b’ the joint coupling matrix given by eqn. (61) and the wave-mode matrices
given by eqns. (62) and (63), contains information about both the joint

dynamics and the dynamics of the members attached to the joint.

r_ The quantity
mm2+iR w=iR, W
1 2

2
-mw +iR,w+i
mw +1Rl 1R2w

in the scattering matrix S(w) given by egqn. (77) is the reflection

+ . c . . .
9 which represents a wave incident upon the joint

from the left, and the quantity

coefficient for w

21R1w

2 . .
- +1le+1R2w

L .. -+ . .
is the transmission coefficient for w Similarly, the quantity

9

2 .
mw —1R1w+1R2w

2
- +ile+iR2w

is the reflection coefficient for 6;-, which represents a wave incident

upon the joint from the right, and the quantity

- 29 -
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is the transmission coefficient for w3 . Note that since each wave-mode A

3 3 3 . 3 Ui’
coordinate contains information about both displacement and force (or ﬁt
DS

. . . . . v
stress), it is not necessary when using wave-mode coordinates to derive ':f:
R

one set of reflection and transmission coefficients for displacement Y
waves and a different set of reflection and transmission coefficients f{:
-
ol
for force (or stress) waves, as is done, for example, in [9). Since the R
P
-~ A
wave-mode coordinates used here, which are defined by eqn. (48), have A

. .

the dimensions of displacement, the reflection and transmission

-

~»

coefficients in the scattering matrix S(w) given by eqn. (77) correspond

L

to the displacement reflection and transmission coefficients given in [9].

The transmission and reflection coefficients contained in the .

ot

scattering matrix S(w) given by egqn. (77) depend on the frequency w. A
2 o

[y
>

Therefore, this is an example of dispersive scattering. As the frequency A

rared

w becomes very large, the scattering matrix S(w) given by eqn. (77)

approaches

S(w) = (79)

Thus, for very high frequencies, the scattering is nondispersive, and
the reflection coefficients are equal to -1, while the transmission
coefficients are equal to zero. Thus for very high frequencies, the

joint in Fig. 4 behaves like a rigid boundary.
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I1f the mass of the joint in Fig. 4 is zero, the scattering matrix

S(w) given by eqn. (77) becomes

Ry - R, 2R,
R, + R, R, + R,
S(w) = _ (80)
2R, R, - Ry
R, +R, R, + R,

The scattering matrix given by eqn. (80) contains the commonly derived
(see, for example, [9]) reflection and transmission coefficients for

displacement waves at the junction of two collinear longitudinal rods.

Example 4: Analysis of a One-Dimensional Lattice Structure

In this fourth and final example, which utilizes the results of
the previous three examples, the one-dimensional lattice of Fig. 5 is
analyzed using wave-mode coordinates and scattering matrices. The
lattice consists of two elastic longitudinal rods connected by a rigid
one-dimensional joint. It is assumed that the joint is massless. Rod
1 has mass density pl, cross-sectional area Al’ elastic modulus El’ and

length % Rod 2 has mass density P cross-sectional area A2, elastic

1°

modulus E_,, and length 22. The joint is subjected to a given force

2,
(t), and it is desired to find the resulting force Fl(t) at point 1.
The scattering matrix relationship at the joint is given by eqn.

(76) as

- 31 -
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+ -~ -+
v, £ t Wy iw(R +R2)
= + . (81)
ol t r w.
3 2 2 3 "
ﬁ 1w(R1+R2)
where
R, - R
1 2
r = em—— (82)
| L R
R, - R
2 1
r = —— (83)
+
2 R1 R2

B (84)
1 Rl + R2
+
2 Rl R2

and R, and R, are given by eqns. (64) and (65), respectively.

1 2
The components of the wave-mode vector il at point 1 in Fig. 5

P satisfy the relationship

CAPIERNCAD (86)

? where r is the reflection coefficient at the left-hand boundary (point
1) of rod 1. The quantity r  may be derived from the boundary conditions
P at point 1. If, for example, point 1 is a fixed end, r, = -1, and if
point 1 is a free end, r = 1 [10]. Similarly, the components of the

wave-mode vector §4 at point 4 in Fig. 5 satisfy the relationship

} (w )=r(w ) (87)
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where ry is the reflection coefficient at the right-hand boundary

(point 4) of rod 2. Again, the quantitv ry may be derived from the
boundary condition at point 4; if point 4 is a fixed end, r3 = -1, and

if point 4 is a free end, ry = 1. The quantities ro in eqn. (86) and

I, in eqn. (87) may be considered as 1 x 1 scattering matrices. It is

assumed that the quantities r and r. are independent of frequency.

3
Eqns. (81), (86) and (87) are the scattering relationships for the
lattice of Fig. 5.

The components of the wave-mode vector §2 at point 2 in Fig. 5 and

the components of the wave-mode vector Ql at point 1 in Fig. 5 are

related by a wave-mode propagation matrix according to eqn. (47) ar

Y,2
;+ e 1 0 -+
2 Y1
il B I RE I PR 0
2 1
where
04
Y, = iw [= (89)
1 El

Similarly, the components of the wave-mode vector EA at point 4 in

Fig. 5 and the components of the wave-mode vector £3 at point 3 in

Fig. 5 are related by

v - 9

e
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N

= iw = (91)

E

i)

Eqns. (88) and (90) are the wave-mode propagation relationships for the
lattice of Fig. 5.

Eqns. (81), (86), (87), (88) and (90) contain eight scalar

, . -4+ —= =4 == -4 -~ =4
equations for the eight unknowns Wy Wy s Wy, Wy, w3 > Wy, W,

-+ -
These equations may be solved for w, and w to give [11]

and w, 1 1
— -Y,4 ]: -2y, ]
— 171 272
(;_+) ) é%‘ re 1+ (tlr3—r2r3)e
' 1w(Rl+R2) (l—r T e—zylkl) (l—r r e—zYZQZ) -r t r. t 8‘2Y1218‘2Y222
o1l 23 0231
(92)
g -y, 2 [ -2y, 9 :]
171 ( _ 2 2)
(;,_) - g € 14 t:lr3 r2r3e
' 1w(Rl+R2) (l—r r e—zylgl) (l—r r e—ZYZRZ) -r t.r, t e_zYlﬂlle—ZYzQ2
1 273 02371
(93)

-+ -
Eqns. (9.) and (93) give the wave-mode coordinates v and Y1 in terms

P

of éﬂk The physical components of the state vector at point 1 are

given in terms of the wave-mode coordinates at point 1 by eqn. (51) as
+
1

Gl 1 1 w
= (94)
Fl -1R1u iR, w w

1 N 1

Substitution of eqns. (92) and (93) into the second scalar equation of




eqn. (94) gives

—ZYZQ

2
1+ (t1r3—r2r3)e )

~ - _ _ (95)
12 (1—r r.e 2Y121>(1—r r.e 2Y2£2> -r t,r.t.e ZYlQl zYzQz
o'1 2%3 A TFet2t3%1 €

-y, 2
171
—<| R (l-ro)e (

Eqn. (95) gives the Fourier transform of Fl(t) in terms of the Fourier
transform of O‘zt). Thus, the quantity in the square brackets in
eqn. (95) is the transfer function between the force é;r;nd the force
Fl. As will be shown below, the transfer function in eqn. (95) can be
written as an infinite series of constants multiplied by pure delavs.
It is noted in passing that the values of w for which the denominator
of the transfer function in eqn. (95) vanishes are the natural
frequencies of the lattice of Fig. 5, and that there is an infinite
number of such frequencies. Thus, the lattice of Fig. 5 is, in the
language of linear system theory, an "infinite-order system."

In order to find Fl(t), it is necessary first to knowé;ZuO, and

then to perform an inverse Fourier transform on eqn. (95). 1In this

example it is assumed that

o

Y = Of
) = Y (96)
where 8(t) is the Dirac delta function, so that [2]

Fw - & (97)

- 35 -




R AN A T A A S S Ca A s b a Ve Jie TYIVIWITIYwTE LYY

.

-
-
-

LR A
AARRAT

Substitution of eqn. (97) into eqn. (95) gives

Y.L -2v,%
R (I-r ) e 11 (1 + (t r.)e z 2)
‘ F.o= g |2 T3
' L’z R1+R2 (l—r T e_zwl ) (1~ r e_ZYZQZ) -r t.r.t e—ZYlQl 6-2Y212
o'l T2¥3 0-2"3"1
(98)
’ which can be written as

- - _ -
v i m2vh, ( 2\(2’2“2> Y14
e + e

R r3tle l-r2r3e
g (=) 4 ) )
G \R R 1M1 Y2™2
o} 1 72 l-rr l-r,.e
F o= o1l 273
' r torate Zlel —2Y222
- 2'3°1 N
- 2
(l—r r,e 2Yl 1) (l—r r.e 2Y2 2)
ol 2°3
(99
By repeated use of the identity [12]
n ® .
e . I (m+l) (m+2) (n+m-1)2" (100)
-2 (=171 m;0 m m vee (n z

eqn. (99) can be written as [11]
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- 1
Fp = g:(R ¥R > (1-r)

co -(2n+1 )
n € )Y, %
.  (rr)) e
ol D
n=0

Y l" l‘..l;

. .‘.
LN

'..
P AR

P L N -2ny &y - (2mtD)y 8, _’,j-__
+ Z (rot2r3t1) X (rorl) P(n+l,m)e e -
n=1 m=0

r..‘.‘. -
»

s ' “- :‘;‘5‘: N

o ~2ny. %, -2my, %
. < T (r2r3)m P(n,m)e 22 e 22

m=0

PWNEXN
ﬂ"‘ F R 3

&)

n
+ ZO r3tl(rot2r3tl) (

o -20y, %, e—(Zm—*—l)Ylﬂ,l)
n:

m
b (rorl) P(n+l,m)e
m=0

!

¥

© ~2ny, %, -2(m+l)v, 2 ey
2 .
. < z (r2r3)m P(n+l,m)e 22 e 2 )‘

m=0

&4?5

L4

(101)

" “l’ﬁ{‘r{ﬁ el
hd

where

-

S

_ (o+m-1)!
"~ (n-1)'m!

P
o

e ‘w "y e

'

P(n,m) (102)

A
R

Now, recalling the definitions of Y, and Y, given by eqns. (89) and (91),
-iwT |,

and the fact that the inverse Fourier transform of e is 8(t-1) [2],

the inverse Fourier transform of eqn. (101) can be taken term by term

to give AL
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, R,
F0 = S xR > (1-r )

+ T (r ettt (r r)HMP(otl,m)A(20T, )2 ((2m+1)T.)
- m=0 © 1 1 1

. ( go (r2r3)mP(n,m))\(2nT2))\(2mT2)>

o0

n m
+ nzo r3tl(rot2r3tl) <;£0 (rorl) P(n+l,m)k(2nTl)A((2m+l)TiJ

. <m}io (r2r3)mP(n+l Jm) A (2nT2))\ (2 (m+l)T2)> ’

(103)
where
L\
= Y
Tl-ll E (104)
1
N i) (105)
2 2./ E
2
and A(T) is a time-shift factor defined by
f(e)A(T) = £(t-T) (10H)
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Writing out the first few terms of eqn. (130) gives

12

F (o) = éﬂz oyl KGR

L1

-
‘S(t)L}(Tl) Frr 0T+ (rorl)zx(511) +. ..

+

~

(‘.(t)r3tl[>\(fl) + r0r1>\(3tl) + (rorl)zk(STl) +—I
. 2

. E‘(ZIZ) + r2r3».(m2) + (r2r3) )\(6T2) +]

2 ]

+ &(t)r t r3tlE.(3Tl) + 2ror1.\(5"tl) + 3(r0r1) ,\(7T1) +J

o 2

. E(ZTZ) + r2r3>\(412) + (r2r3)")\(6T2) +J

+

2
5(t)r3tl(r0t2r3t1) ).(3T1) + 2r0r1>\(5T1) + 3(ror1) )\(7”(1) +]

2
. [\(ATZ) + 2r2r3)\(6l2) + 3(r2r3) )\(8T2) +:I

2 2, o~
+ 6(t)(r0t2r3tl) A(STl) + 3ror11(7Tl) + 6(r0r1) X(9‘1) +...]

2
. E g R N
)\(4(2) + 2r2r3)\(6T2) + 3(r2r3) ).(8r2

+

2 2
% ) +...
S(t)rBtl(rotertl) )\(511) + 3r0r1 (711) + 6(rorl) (9T1) ]

2
. [).(612) + 3r2r3).(8t2) + 6(r2r3) X(]OTZ) +]

+} (107)
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Eqn. (103), which is an infinite serics of impulses scaled in amplitude

by reflection and transmission coefficients and delaved by multiples N
of the times Tl and Tz, is the desired solution for Fl(t). 32
4

P

Each of the impulses in egn. (107) can be interpreted physically ;;

by considering the propagation of the initial impulse applied to the it

S —\‘n

joint. The initial impulse ¢J causes an impulse to propagate to the Sy

. . i

left towards point 1, and also causes an impulse to propagate to the S
b

right towards point 4. After a time delay Tys the impulse which !

initially propagates to the left arrives at point 1, where it is o,

reflected and scaled in amplitude by the reflection coefficient r }:;
The reflected impulse arrives at the joint after an additional time vy
delay T and at the joint it is partially reflected back towards point e
N,

, e

1, and partially transmitted towards point 4. The reflected impulse is e

scaled in amplitude by the reflection coefficient rl, and the trans- .f

o

mitted impulse is scaled in amplitude by the transmission coefficient -;

t,. The impulse which initially propagates from the joint to the right o

arrives, after a time delav TZ’ at point 4, where it is reflected and -
scaled in amplitude by the reflection coefficient ry. The reflected By
impulse arrives at the joint after an additional time delav T,, and at -
the joint it is partiallv reflected back towards peint 4, and partially :{
transmitted towards point 1. The reflected impulse is scaled in ampli- o

tude by the reflection coefficient r,, and the transmitted impulse is :}.
scaled in amplitude by the transmission coefficient tl. This process .

Y

N

of propagation, reflection, and transmission continues indefinitelv. oY

Since the propagation constants and the scattering matrices for the t:'

. -y

lattice of Fig. 5 are nondispersive, the initial impulse applied to the e

~

joint maintains its identitv as an impulse as it propagates and as it AN
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2
is reflected and transmitted. :;:
The first infinite series in egqn. (107) represents those impulses »
T
which initially propagate from the joint to the left, and then remain :5
S
$ in rod 1 due to successive reflections at point 1 and at the joint. ;t
The first product of two infinite series in eqn. (107) represents e
N
those impulses which initially propagate from the joint to the right, E&:
? and then, after an arbitrary number of reflections in rod 2, are trans- S;
mitted through the joint into rod 1, and remain thereafter in rod 1. fg
o
The second product of two infinite series in eqn. (107) represents i;
those impulses which initially propagate from the joint to the left, $:,
reflect an arbitrary number of times in rod 1, are transmitted through z
the joint into rod 2, reflect an arbitrary number of times in rod 2, ézé
are transmitted through the joint into rod 1, and remain thereafter iﬁ,
in rod 1. The third product of two infinite series in eqn. (107) fi;
represent those impulses which initially propagate from the joint to fEE
the right, reflect an arbitrary number of times in rod 2, are trans- :;:
mitted through the joint into rod 1, reflect an arbitrary number of §j
times in rod 1, are transmitted through the joint into rod 2, reflect Ei
an arbitrary number of times in rod 2, are transmitted through the joint if
into rod 1, and remain thereafter in rod 1. The remaining terms in T::‘
eqn. (103) can be interpreted in a similar manner. :E"
The response Fl(t) given by eqn. (103) is obtained here by using ﬁL‘
wave-mode coordinates and scattering matrices in the frequency domain :,:
",
to obtain an expression Fl(w), and then performing an inverse Fourier i,(
transform to obtain Fl(t). The response Fl(t) can also be obtained by *$‘
a direct consideration of propagation, reflection, and transmission in ~ v
‘I. i

a‘:{a.
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b ’
‘.
the time domain. Such an approach is taken in [13]. The response ::
Fl(t) given here agrees exactly with the response which is obtained o
using the methods given in [13]. In fact, the numerical coefficients :
(
which appear in the various infinite series of eqn. (103), and which :
occur here naturally as a part of the process of inverse Fourier <
A
transformation, account for the existence of "equivalent paths" from -
the input location (the joint) to the response location (point 1). The ;i:
concept of equivalent paths in a lattice structure is discussed A
thoroughly in Appendix A of [13], and some sketches of equivalent ::
Y
’
. paths in the lattice of Fig. 5 are given in [11]. The advantage of ;:
the approach taken here, which uses wave-mode coordinates and scattering g
RS
A
. . . , )
matrices, is that this approach may be extended, using the same formal iz
procedures, to the analysis of two and three-dimensional lattice '}f
2=
structures. .
2
N
r;
P
T
"..
o~
%
i
o
"
A

4
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CONCLUSIONS X
L] "
The examples given in the previous section illustrate, in principle, -
>
)
. . . “A
all the steps required for an analysis of wave propagation in an v
L arbitrary lattice structure. The basic ingredients of such an analysis N
)
L4
are a wave-mode matrix Y(u) and a wave-mode propagation matrix W(w) :"
3,
for each member of the lattice and a scattering matrix §(w) and a :f
N
wave-mode generation matrix G(w) for each joint in the lattice. A
<.
wave-mode propagation relationship such as eqn. (7) applied to each oy
member and a sc.ttering relationship such as eqn. (25) applied to each Ci
k -
joint provide a set of equations which can be solved for the wave-mode
- - :: ¢
vector w at any point in the lattice. The state vector z at any point )
2
in the lattice can then be obtained through the use of the wave-mode -
transformation given by eqn. (5). Finally, individual physical com-
ponents of the state vector z may be obtained through the process of -
<5
inverse Fourier transformation. i,
)
The major difficulty in the procedure just described is the .
o
-~.
evaluation of the inverse Fourier transform. Efficient numerical fj
=
techniques for evaluating complicated inverse Fourier transforms are .
R
necessary if the methods described in this paper are to be used '
Y
N
successfully in the analysis of large and complex lattice structures. ;{;
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ig. 3 Rigid one-dimensional joint.

- 47 -

AR P

............... L R N ﬁ-'-. LA N T RPN ._"-_ RN A
AT AT . PPN N

.....
.......
e« S e

2

sl

€Y
»
2" o

LI PR
\'4.'!".' u"n_'n_'c

L 4
(Al

4
4 4 % S

LAY NN
* . Yl‘{l"

LI ]
o

(2
0
£ oo

PR
Y
O R

]
oy
.,

= S-\
\'\ . \'A. a8

PO, Pie t"’l" :'.\ b :‘ -.,., !
RV ," "';.I-‘-")

-----
.....




Fig. 4

(b)

Two elastic longitudinal rods attached to a rigid

one-dimensional joint.
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